

მიწისძვრები Earthquakes

3.3

დაფიქსირებული მიწისძვრები Recorded Earthquake Events

3.3.1

მსხვერპლის რაოდენობითა და დამანგრეველი მოქმედებით მიწისძვრა აღემატება ყველა სხვა ბუნებრივ კატასტროფას. სეისმური საფრთხე განსაკუთრებით დიდია ურბანიზებულ ტერიტორიებზე, სადაც მოსახლეობის დიდი სიმჭიდროვე, მრავალსართულიანი შენობები, საქალაქო ინფრასტრუქტურის არსებობა მნიშვნელოვნად ზრდის მსხვერპლისა და ზარალის რისკს. განსაკუთრებით მძიმეა მიწისძვრის შედეგები განვითარებად ქვეყნებში. ზოგჯერ ზარალი იმდენად დიდია, რომ ქვეყანას არ შეუძლია, დამოუკიდებლად დასძლიოს მიწისძვრის შედეგები და წლების, ზოგჯერ კი ათწლეულების განმავლობაში ფერხდება ქვეყნის განვითარება.

მსოფლიო გამოცდილება გვიჩვენებს, რომ ყურადღება სეისმური საფრთხისადმი, სამწუხაროდ, დანაშაულებრივად მცირეა მიწისძვრების ე. წ. გაყუჩების პერიოდებში და მკვეთრად იზრდება მხოლოდ კატასტროფის შემდეგ. მიწისძვრის მოკლევადიანი ეფექტიანი პროგნოზირება, რაც სეისმური საფრთხისა და რისკის შეფასებაში გამოიხატება, ამოუხსნელ ამოცანად რჩება მსოფლიო სეისმოლოგიური საზოგადოებისათვის. გრძელვადიანი ალბათური პროგნოზი შედარებით კარგად არის დამუშავებული, რაც, თავის მხრივ, აადვილებს მოსახლეობის ინფორმირებასა და ტრენინგებს, ადრეულ შეტყობინებას, კატასტროფებისთვის მზადყოფნას, სადაზღვევო პოლიტიკის დაგეგმვას, მიწისძვრის დამანგრეველი შედეგების ლიკვიდაციას, რეაბილიტაციისა და რეკონსტრუქციის ორგანიზებას. დღეისათვის საერთაშორისო დონეზე დამკვიდრდა მიდგომა, რომ კატასტროფის შედეგების შემცირება უნდა მოხდეს მზადყოფნის გაზრდის ხარჯზე, რაც, თავის მხრივ, საშიშროების შეფასების შედეგებს ეფუძნება. შესაბამისად, სეისმური საშიშროების ანალიზი და ადეკვატური შეფასება აუცილებელ პირობას წარმოადგენს სეისმურად აქტიური რეგიონების უსაფრთხო და სტაბილური განვითარებისათვის.

Earthquakes are considered to be among the most devastating natural phenomena, causing huge economic damage as well as human losses. Many regions prone to earthquakes are densely populated, and experience a high level of seismic risk. Special attention should be drawn to developing countries, where natural catastrophes can cause tens of thousands of deaths and severe economic losses, setting these states back for many years.

Unfortunately world practice shows that attention to seismic hazards remains low in so called quiescence periods and rapidly increases only after a catastrophe occurs. Though the short-term prediction of earthquakes remains an unsolved task for the world's seismological community, long term probabilistic prognoses in terms of seismic hazard and risk assessments are well developed. The latter is connected with pre-disaster activity and the management of consequences of a possible disaster. In particular, this direction includes planning of insurance policies, decision-making, early warning, training and education of the population, and the organization of relief, rehabilitation and reconstruction. There is a broad recognition that it is extremely important to ensure disaster preparedness through reducing of vulnerability to its impacts. This approach is based on the results of hazard assessment research. The proper and adequate assessment of seismic hazards represents an indispensable condition for the safe and stable development of seismically active regions.

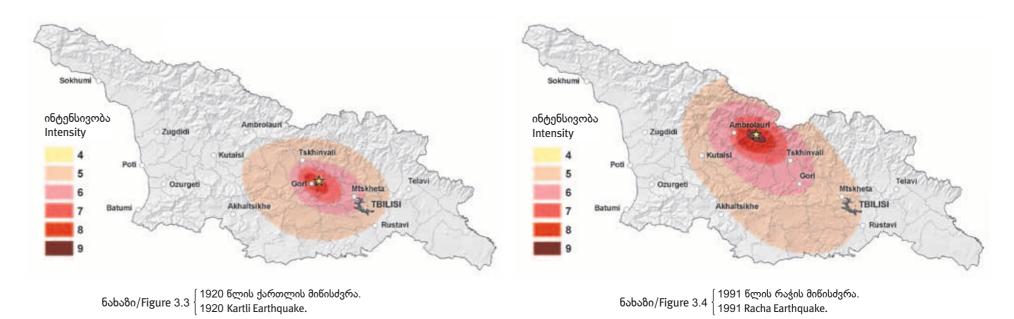
საქართველოს ტერიტორია კავკასიის ალპურ-ჰიმალაური კოლიზიის სარტყლის ნაწილს წარმოადგენს, რომლის თანამედროვე ტექტონიკას განსაზღვრავს არაბეთის ფილაქნის მოძრაობა ჩრდილოეთით, ევრაზიის ფილაქნის მიმართულებით. ფილაქანთა კონვერგენციის სიჩქარე შეფასებულია დაახლოებით 30 მმ/წ-ით, რომლის 2/3 მცირე კავკასიონის სამხრეთით ვითარდება, ხოლო კავკასიონის მთავარ ქედთან სრულად ქრება. სწორედ აღნიშნული კოლიზია განაპირობებს საქართველოს ტერიტორიის სეისმური რღვევების რთულ სტრუქტურას — დიფუზური სეისმურობით. ისტორიული და ინსტრუმენტული პერიოდების სეისმური მონაცემების ანალიზი გვიჩვენებს, რომ საქართველოში მომხდარა ძლიერი მიწისძვრები 7.0-7.5 მაგნიტუდითა და 9-10 (MSK სკალით) მაკროსეისმური ეფექტით. მსგავსი კატასტროფული მიწისძვრების განმეორებადობის პერიოდი (ერთსა და იმავე კერაში) ათასი წლის რიგისაა. საქართველოს ტერიტორიაზე რამდენიმე სეისმურად აქტიური ზონა შეიძლება გამოიყოს, პირველ რიგში, ესაა კავკასიონის მთავარი ქედი და ჯავახეთის ზეგანი, აგრეთვე აჭარა-თრიალეთის ქედის რღვევათა სისტემა, რომელთანაც წარსულში მომხდარი დამანგრეველი მიწისძვრები ასოცირდება.

Georgia is situated in a seismically active region within the Caucasus, which is one of the most seismically active regions in the Alpine-Himalayan collision belt. Present day tectonics of the region is defined by the northward movement of the Arabian plate towards the Eurasian plate. Convergence rate is estimated to be about 30 mm/yr, 2/3 of which is likely to be taken up south of the Lesser Caucasus, where it completely vanishes at the Greater Caucasus, forming a complex structure of seismic faults with diffused seismicity. Analysis of the historical and instrumental seismological data shows that strong earthquakes with magnitude of up to 7.0-7.5 and microseismic intensity 9 (MSK scale) have occurred here. The reoccurrence period of such events is of the order of thousands years. Several major seismic zones can be defined in Georgia, first of all the main ridge of the Greater Caucasus and Javakhety volcanic plateau, the Adjara-Trialeti ridge fault system is also characterized by a history of destructive earthquakes.

კავკასიის მიწისძვრათა კატალოგი აერთიანებს ორ განსხვავებულ ნაწილს - ისტორიულსა და ინსტრუმენტულს. დოკუმენტირებული ისტორიული კატალოგი სათავეს იღებს ახალი წელთაღრიცხვის დასაწყისიდან. ამ პერიოდის მიწისძვრებზე ინფორმაცია ძირითადად საისტორიო წყაროებიდან იქნა მოძიებული. ისტორიული მიწისძვრების პარამეტრები დადგინდა მაკროსეისმური მონაცემების ანალიზის საფუძველზე, ნგრევისა და დაზიანებების არსებული აღწერების მიხედვით. შესაბამისად, მონაცემთა სიმწირიდან გამომდინარე, შედარებით ადრეული პერიოდის მიწისძვრებისათვის ცდომილება როგორც ეპიცენტრის ლოკალიზაციაში, ასევე დროში შეიძლება იყოს მნიშვნელოვანი.

მიუხედავად ამისა, ცხადად ჩანს კორელაცია წარსულში მომხდარი მიწისძვრებსა და სეისმურ რღვევებს შორის. ძლიერი მიწისძვრების მაგნიტუდები შეფასებულ იქნა, როგორც ~ 6.5-7, ხოლო მაკროსეისმური ეფექტი ეპიცენტრში — 8-9 ბალი MSK სკალით. წარსულში მომხდარი უდიდესი მიწისძვრები ძირითადად კავკასიონის მთავარი ქედის რღვევათა სისტემასა (ალავერდის მიწისძვრა 1742, Ms=6.8, Io=9, ლეჩხუმ-სვანეთის მიწისძვრა1350, Ms=7.0, Io=9 etc.) და ჯავახეთის ზეგანს (თმოგვის მიწისძვრა 1088, Ms=6.5, Io=9, ახალქალაქის მიწისძვრა 1899, Ms=6.3, Io=8-9) უკავშირდება. აქვე აღსანიშნავია სამცხის

The catalogue of earthquakes of the Caucasus consists of two different parts: historical and instrumental. The documentary historical catalogue stretches back to the beginning of the Christian era. The information about the earthquakes of this period has been extracted from historical annals. The parameters of historical earthquakes are determined on the basis of macroseismic data analysis from contemporary documentary description of damage caused by earthquakes. For the older events the errors, in both location and date, may be substantial. Still, while bearing this in mind correlation between the locations of historical events and active faults is evident. The magnitude of the largest events was estimated as ~ 6.5-7 and the macroseismic effect as 8-9 on MSK scale (New catalogue, 1982). The largest historical events were mainly connected with the active faults of the Greater Caucasus (Alaverdi earthquake of 1742, Ms=6.8, Io=9; Lechkhumi-Svaneti earthquake of 1088, Ms=6.5, Io=9; etc.) and Javakheti plateau in the Lesser Caucasus (Tmogvi earthquake of 1088, Ms=6.5, Io=9;


მიწისძვრა1283, Ms=7.0, Io =9, რომლის ზუსტი ლოკალიზაცია არ ხერხდება, თუმცა, სავარაუდოდ, უკავშირდება მცირე კავკასიონის რღვევათა სისტემას.

ვავკასიაში მიწისძვრებზე ინსტრუმენტული დავვირვების პერიოდი მე-20 საუკუნის დასაწყისს ემთხვევა. ამ პერიოდში რეგიონში რამდენიმე დამანგრეველი მიწისძვრა დაფიქსირდა, რომლებიც მნიშვნელოვან ზარალს უკავშირდება. ამ მხრივ აღსანიშნავია გასული საუკუნის დასაწყისში ქალაქ გორთან მომხდარი 1920 წლის ქართლის მიწისძვრა (Ms=6,2, lo=8-9) (იხ. ნახაზი 3.3), როდესაც 150-მდე ადამიანი დაიღუპა. გასული ათწლეულების განმავლობაში კავკასიაში რამდენიმე კატასტროფულ მიწისძვრა მოხდა, მათ შორის განსაკუთრებით მნიშვნელოვანია 1988 წლის სპიტაკის მიწისძვრა (Ms=7.0, lo=9-10 ბალი). მიწისძვრის შედეგად სომხეთში 25,000 ადამიანი დაიღუპა, 50,000 ადამიანი უსახლკაროდ დარჩა, ხოლო ეკონომიკური ზარალი შეფასდა 15 მილიარდ მანეთად. სულ რაღაც სამი წლის შემდეგ, 1991 წელს, საქართველოში მოხდა მიწისძვრა (იხ. ნახაზი 3.4 და 3.5), რომელიც რაჭის მიწისძვრის სახელითაა ცნობილი (Ms=7.0, lo=9 ბალი), დაიღუპა დაახლოებით 200 ადამიანი, ხოლო 60,000 დარჩა უსახლკაროდ. მიწისძვრით გამოწვეულმა ნგრევამ ათასობით კვადრატული კილომეტრი მოიცვა.

სამწუხაროდ, როგორც გასული წლების პრაქტიკამ გვიჩვენა, მაღალი სეისმური რისკი საშუალო სიმძლავრის მიწისძვრებთანაც ასოცირდება, რაც, თავის მხრივ, მეგაპოლისებს უკავშირდება. 2002 წლის 25 აპრილის თბილისის მიწისძვრამ, რომლის ეპიცენტრიც ქალაქის ფარგლებში მდებარეობდა, მნიშვნელოვანი ნგრევა და ზარალი გამოიწვია. მიუხედავად იმისა, რომ ეპიცენტრში მიწისძვრის მაგნიტუდა მხოლოდ 4.5, ხოლო ინტენსივობა 7 ბალი იყო (MSK სკალით), დაიღუპა 7 ადამიანი, ხოლო ზარალმა 160 მილიონი აშშ დოლარი შეადგინა.

Akhalkalaki earthquake of 1899, Ms=6.3, Io =8-9; etc.). The exact epicenter of the strong Samtskhe earthquake of 1283, Ms=7.0, Io=9, is still not clear, but it was probably connected to the Lesser Caucasus fault system.

The instrumental period of seismic observation began in the Caucasus at the very beginning of the 20th century. Since then, several destructive earthquakes have occurred in the region, causing damage and human losses. The Kartli earthquake of 1920 (Ms=6,2, Io =8-9) which occurred in Gori (see Figure 3.3) has to be mentioned as it caused severe destruction and around 150 people died. During the last decades several destructive earthquakes with magnitudes up to 7, intensity 9 (MSK scale) occurred in the Caucasus region: during the 1988 Spytak earthquake in Armenia (M=7.0) 25,000 people were killed, 50,000 were injured and economic damage equaled nearly 15 billion Rubles. Just three years later, in 1991, the Racha earthquake (see Figure 3.4 and 3.5) occured in Georgia (M=7.2), more than 200 people were killed and approximately 60,000 were left homeless. The damage covered thousands of square kilometers. Unfortunately, the last few years have shown that high seismic risk is also associated also with moderate events. Big cities in the Caucasus, such as capital of Georgia – Tbilisi, are subjected to high seismic risk, which was proven by the 25 April, 2002 Tbilisi Earthquake, the epicenter was located within the city limits. Although the earthquake magnitude was only 4.5 and intensity up to 7 (MSK scale), there was significant damage in Tbilisi – assessed as 160 million US dollars, 7 people died and several more were injured.

ნახაზი/Figure 3.5 $\left\{ egin{align*} 3.5 & 0.5 &$

3.3.2 მიწისძვრის საფრთხის შეფასება Earthquake Hazard Assessment

საქართველოს სეისმური საშიშროების პირველი რუკა 1948 წლით თარიღდება, რომელიც დაფიქსირებულ სეისმურობას ეფუძნებოდა და აქცენტი უკვე მომხდარი მიწისძვრების ზონებზე კეთდებოდა. ბუნებრივია, რუკას არ გააჩნდა პროგნოზული ელემენტი და ყოველი მომდევნო ძლიერი მიწისძვრის შემდეგ მისი განახლება ხდებოდა. სამწუხაროდ, 1988 წლის სპიტაკისა და 1991 წლის რაჭის მიწისძვრები მოხდა ზონებში, სადაც მოსალოდნელი მაკროსეისმური ეფექტი 1-2 ბალით ნაკლებად იქნა შეფასებული.

სეისმური საშიშროების შეფასებისას თანამედროვე მიდგომა ალბათურ სეისმურ საშიშროებას ეფუძნება, რომელიც მიწისძვრის შესაძლო კერების განსაზღვრასა და მათ პარამეტრიზაციას ითვალისწინებს. აღნიშნულიდან გამომდინარე, განისაზღვრება ალბათობა იმისა, რომ გარკვეულ წერტილში სეისმური ეფექტის (მაკროსეისმური ინტენსივობა, გრუნტის მაქსიმალური აჩქარება, გრუნტის მაქსიმალური სიჩქარე, სპექტრული აჩქარება და სხვ.) დონე გადაჭარბებული იქნება დროის ფიქსირებული პერიოდის განმავლობაში.

სეისმური საშიშროების ალბათური შეფასების მეთოდი ფართოდ დაინერგა უკანასკნელი 30 წლის განმავლობაში. ამ მეთოდის ძირითადი უპირატესობა სეისმური საშიშროების შეფასების სხვა მეთოდებთან შედარებით ისაა, რომ იგი საშუალებას იძლევა, უფრო ზუსტად იქნეს გათვალისწინებული ყველა შესაძლო მიწისძვრის ეფექტი, მიწისძვრათა განმეორებადობის სიხშირე და ცდომილებანი, რომლებიც ახლავს მიწისძვრის სიმძლავრის, მდებარეობისა და განმეორებადობის სიხშირის პროგნოზირებას.

საქართველოს პირველი ალბათური სეისმური საშიშროების რუკა შეიქმნა 1999-2000 წლებში, საქართველოს მეცნიერებათა აკადემიის გეოფიზიკის ინსტიტუტის რეგიონული სეისმოლოგიის განყოფილების ბაზაზე (თ. ჭელიძე, ზ. ჯავახიშვილი, ო. ვარაზანაშვილი,

The very first seismic hazard map of Georgia dates back to 1948, and was based on observed seismicity with an emphasis on the zones where earthquakes had already taken place. Naturally, the map did not have any forecast element; hence it used to be updated after every severe earthquake. Unfortunately the Spitak earthquake in 1988 and Racha earthquake in 1991 took place in zones where the expected micro-seismic effect was underestimated by 1-2 points, which was directly reflected by the resulting victims and losses.

The modern approach relies on a probabilistic seismic hazard assessment, which is based on the identification of possible earthquake sources and their parameterization. As a result of this, the probability that the predicted level of seismic effect (macro-seismic intensity, Peak Ground Acceleration, Peak Ground Velocity, Spectral Acceleration, etc.) will be exceeded at a certain point during a fixed period of time is defined.

The method of probabilistic seismic hazard assessment was broadly introduced 30 years ago. The main advantage of this method, in comparison to other seismic hazard assessment methods, is the fact that it provides the possibility to reliably consider, including: the effect of all possible earthquakes; the frequency of earthquakes' reoccurrence; and uncertainties associated with the definition of magnitude, location and reoccurrence frequency of earthquakes.

The first probabilistic seismic hazard map of Georgia was created in 1999-2000 by the Regional Seismology Department of the former Institute of Geophysics (Authors: T. Chelidze, Z. Javakhishvili, O. Varazanashvili, M. Elashvili, I. Kolesnikov, T. Godoladze, N. Butikashvili and E. Glonti). Later, in 2009, the probabilistic seismic hazard map was officially approved and became a part of the acting Building Codes of Georgia. The map is based on the following principle: "From the earthquake source zones to the seismic effects on the Earth surface", i.e. initially, potential sources of earthquakes and their parameters have been studied and identified before the total probability of the cumulative effects of the stated earthquakes were calculated at various points of the Earth surface.

To carry out a probabilistic seismic hazard assessment of Georgia', the software SEISRISK III was used. This method consists of four stages:

1. Identification and parameterization of Earthquake source zones

Identification of the earthquake source zones is based on an analysis scheme of active faults in Georgia, which has been reanalyzed and compared to the observed and historical seismicity, as well as to other geophysical fields. The faults have been classified by the earthquake source zones and parameterized.

მ. ელაშვილი, იუ. კოლესნიკოვი, თ. გოდოლაძე, ნ. ბუტიკაშვილი, ე. ღლონტი). მოგვიანებით 2009 წელს სეისმური საშიშროების ალბათური რუკა ოფიციალურად დამტკიცდა ნორმატიულ დოკუმენტად და შევიდა საქართველოს მოქმედ სამშენებლო ნორმებში. აღნიშნული რუკა ემყარება პრინციპს - "მიწისძვრის კერის ზონებიდან დედამიწის ზედაპირზე სეისმური ეფექტისაკენ", ანუ თავდაპირველად შესწავლილ იქნა და განისაზღვრა მიწისძვრათა პოტენციური კერები, მათი პარამეტრები, ხოლო შემდეგ გამოითვალა ამ მიწისძვრების შესაძლო ეფექტების ჯამური ალბათობა დედამიწის ზედაპირის სხვადასხვა წერტილში.

საქართველოს ტერიტორიის სეისმური საშიშროების ალბათური შეფასებისათვის გამოყენებულ იქნა პროგრამა SEISRISK III. მეთოდი ოთხი ეტაპისგან შედგება:

1. მიწისძვრის კერის ზონების გამოვლენა და პარამეტრიზაცია.

მიწისძვრის კერის ზონების იდენტიფიკაციას საფუძვლად დაედო საქართველოს აქტიურ ტექტონიკურ რღვევათა სქემა, რომელიც კიდევ ერთხელ გაანალიზდა, შედარდა დაკვირვების შედეგად დაფიქსირებულ და ისტორიულად ცნობილ სეისმურ მოვლენებს, სხვა გეოფიზიკურ ველებს. მოხდა რღვევების სისტემატიზაცია მიწისძვრის კერის ზონებად და პარამეტრიზაცია.

2. მიწისძვრათა განმეორებადობის კანონზომიერებანი კერის ზონებისათვის.

გამოყენებულ იქნა კავკასიის მიწისძვრათა კატალოგი, კერძოდ, ინსტრუმენტული პერიოდის მიწისძვრები. მოხდა კატალოგის დეკლასტერიზაცია (მოსცილდა ე.წ. ფორშოკები და აფტერშოკები), ხოლო შემდეგ თითოეული კერისათვის აიგო გუტენბერგ-რიხტერის განაწილება, რომლის მეშვეობითაც დადგინდა კონკრეტული მაგნიტუდის

2. Earthquake Reoccurrence Rates for the Earthquake Source Zones

The earthquake catalogue of the Caucasus, specifically the instrumental period earthquakes, has been analyzed. The catalogue has been de-clustered (the so-called foreshocks and aftershocks have been removed), and a Guttenberg-Richter distribution has been constructed for each source, through which frequency of occurrence for the specific magnitude earthquakes has been estimated.

3. Earthquakes' Surface effect attenuation lows

Two types of seismic effects and respective attenuation lows have been applied: first, seismic intensity in MSK scale and Peak Ground Acceleration value (PGA). In the first case, the attenuation relation of macro-seismic intensity, specifically established for Georgia, was applied while the peak horizontal accelerations of soil were calculated according to the South Caucasus attenuation model, which is based on severe earthquakes reported in the region.

4. Calculation of integral seismic effects, taking into account the variations of all parameters

The probabilities of exceeding certain level of seismic effects for fixed period of time was calculated (return period 50 years) using the software SEISRISK III. All existing variations for each parameter have been considered and the total probabilities of the integral seismic effect on the surface calculated. All calculations and composition of maps have been carried out using GIS technologies. Probability maps have been designed for 50-year return periods and for 10%, 5%, 2% and 1% exceedance probabilities.

მიწისძვრების განმეორებადობის სიხშირე.

3. მიწისძვრის მიერ გამოწვეული სეისმური ეფექტის დაცხრომის კანონზომიერებანი.

გამოყენებულ იქნა ორი სახის სეისმური ეფექტი და შესაბამისი დაცხრომის კანონზომიერებანი. პირველი - სეისმური ინტენსივობა ბალებში (MSK სკალა) და მეორე - მაქსიმალური ჰორიზონტული აჩქარების მნიშვნელობა - PGA. პირველ შემთხვევაში გამოყენებულ იქნა სპეციალურად საქართველოსათვის განსაზღვრული მაკროსეისმური ინტენსივობის დაცხრომის კანონზომიერება. ხოლო გრუნტის მაქსიმალური ჰორიზონტული აჩქარებები დათვლილ იქნა სამხრეთ კავკასიის დაცხრომის მოდელის გამოყენებით, რომელიც რეგიონში მომხდარი ძლიერი მიწისძვრების აჩქარებების ჩანაწერებს ეფუძნება.

4. ინტეგრალური სეისმური ეფექტის გამოთვლა, ყველა გამოყენებული პარამეტრის ცდომილებების გათვალისწინებით.

გამოთვლილ იქნა სეისმური ეფექტის მოცემული დონის გადამეტების ალბათობები დროის ფიქსირებული შუალედისათვის (მოლოდინის დრო - 50 წელი). გამოყენებულ იქნა პროგრამა SEISRISK III. მოხდა ყოველი პარამეტრისათვის არსებულ ცდომილებათა გათვალისწინება და ბოლოს გამოითვალა ზედაპირზე ინტეგრალური სეისმური ეფექტის ჯამური ალბათობები. ყველა გამოთვლა და რუკის აგება დაემყარა GIS-ის ტექნოლოგიას. აგებულ იქნა 10%, 5%, 2%, 1% ალბათური რუკები 50 - წლიანი მოლოდინის დროისათვის.

